A7.0 FEEDBACK RESISTORS AND AMPLIFIER NOISE

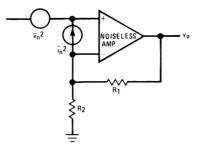


FIGURE A7.1 Practical Feedback Amplifier

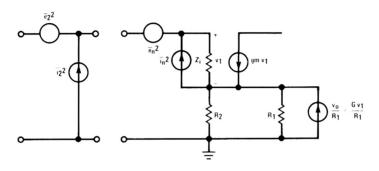


FIGURE A7.2 Model of First Stage of Amplifier

To see the effect of the feedback resistors on amplifier noise, model the amplifier of Figure A7.1 as shown in Figure A7.2.

We must now show that the intrinsic noise generators $\overline{e_n}^2$ and $\overline{i_n}^2$ are related to the noise generators outside the feedback loop, $\overline{e_2}^2$ and $\overline{i_2}^2$. In addition, the output noise at v₀ can be related to v₁ by the open loop gain of the amplifier G, i.e.,

$$v_0 = v_1 G$$

Thus v_1 is a direct measure of the noise behavior of the amplifier. Open circuit the amplifier and equate the effects of the two noise current generators. By superposition:

$$v_1 = i_2 Z_i$$

also $v_1 = i_n Z_i$

$$\therefore \overline{i_n}^2 = \overline{i_2}^2$$

Short circuit the input of the amplifier to determine the effect of the noise voltage generators. To do this, short the amplifier at $\overline{e_2}^2$ and determine the value of v₁, then short circuit the input at $\overline{e_n}^2$ and find the value of v₁.

$$e_{2} = v_{1} + R_{1} \| R_{2} \left(gm v_{1} + \frac{G v_{1}}{R_{1}} \right)$$

$$v_{1} = e_{2} \frac{1}{1 + gm R_{1} \| R_{2} + G \frac{R_{1} \| R_{2}}{R_{1}}}$$
(A7.1)

Now short the input at $\overline{\mathbf{e}_n}{}^2;\,\overline{\mathbf{e}_n}{}^2$ and $\overline{\mathbf{i}_n}{}^2$ both affect $v_1.$

$$\overline{e_n}$$
2 gives:

$$v_1 = e_n - \frac{1}{1 + gm R_1 || R_2 + G \frac{R_1 || R_2}{R_1}}$$
 (A7.2)

 $\frac{1}{10}$ 2 gives:

$$-v_1 = Z_i ||R_1||R_2 \left(gm v_1 + G \frac{v_1}{R_1} - i_n\right)$$

Assume $Z_i \gg R_1 || R_2$

$$v_1 = \frac{i_n R_1 || R_2}{1 + gm R_1 || R_2 + G \frac{R_1 || R_2}{R_1}}$$
(A7.3)

Add Equations (A7.2) and (A7.3) and equate to Equation (A7.1):

$$\frac{\overline{e_n}^2 + \overline{i_n}^2 (R_1 || R_2)^2}{\left(1 + gm R_1 || R_2 + G \frac{R_1 || R_2}{R_1}\right)^2} =$$

$$\frac{\overline{e_2}^2}{\left(1 + gm \; R_1 || R_2 + G \; \frac{R_1 || R_2}{R_1}\right)^2}$$

$$\therefore \overline{e_2}^2 = \overline{e_n}^2 + \overline{i_n}^2 (R_1 || R_2)^2$$