A4.7 Variable Gain AC Amplifier
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A4.10 Single Supply Biasing of Inverting AC Amplifier
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A5.0 MAGNETIC PHONO CARTRIDGE NOISE
ANALYSIS

A5.1 Introduction

Present methods of measuring signal-to-noise (S/N) ratios
do not represent the true noise performance of phono
preamps under real operating conditions. Noise measure-
ments with the input shorted are only a measure of the
preamp noise voltage, ignoring the two other noise sources:
the preamp current noise and the noise of the phono
cartridge.

Modern phono preamps have typical S/N ratios in the 70dB
range (below 2mV @ 1kHz), which corresponds to an input
noise voltage of 0.64 uV, which looks impressive but is quite
meaningless. The noise of the cartridge! and input net-
work is typically greater than the preamp noise voltage,
ultimately limiting S/N ratios. This must be considered
when specifying preamplifier noise performance. A method
of analyzing the noise of complex networks will be presen-
ted and then used in an example problem.

Ab.2 Review of Noise Basics

The noise of a passive network is thermal, generated by the
real part of the complex impedance, as given by Nyquist's
Relation:

V2 = 4k T Re(Z) Af (AB.2.1)

where: Vn2 = mean square noise voltage
k = Boltzmann’s constant (1.38 x 10-23W-sec/°K)
T = absolute temperature (°K)
Re(Z) = real part of complex impedance (£2)
Af = noise bandwidth (Hz)

The total noise voltage over a frequency band can be readily
calculated if it is white noise (i.e., Re(Z) is frequency
independent). This is not the case with phono cartridges or
most real world noise problems. Rapidly changing cartridge
network impedance and the RIAA equalization of the pre-
amplifier combine to complicate the issue. The total input
noise in a non-ideal case can be calculated by breaking the
noise spectrum into several small bands where the noise is
nearly white and calculating the noise of each band. The
total input noise is the RMS sum of the noise in each of the
bands N1, N2, ..., Np.
o 12 2 2 3
noise = (VN1 +VNp® T ... ¥ VNp©) (A5.2.2)
This expression does not take into account gain variations
of the preamp, which will also change the character of the
noise at the preamp output. By reflecting the RIAA equal-
ization to the preamp input and normalizing the gain to
0dB at 1kHz, the equalized cartridge noise may then be
calculated.

7
VEQ = (A7 12VN 2 +1 A2 12+ ..+ 1A 12 VN2 ™

(A5.2.3)

where: VEQ = equalized preamp input noise

| An | = magnitude of the equalized gain at the
center of each noise band (V/V)
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FIGURE A5.1 Normalized RIAA Gain

A5.3 Cartridge Impedance

The simplified lumped model of a phono cartridge consists
of a series inductance and resistance shunted by a small
capacitor. Each cartridge has arecommended load consisting
of a specified shunt resistance and capacitor. A model for
the cartridge and preamp input network is shown in Figure
Ab.2.

PREAMP INPUT AND

PHONO
CARTRIDGE CABLE CAPACITANCE

FIGURE A5.2 Phono Cartridge and Preamp Input Network

This seemingly simple circuit is quite formidable to analyze
and needs further simplification. Through the use of Q
equations,? a series L-R is transformed to a parallel L-R.
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Simplifying the input network,
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The impedance relations for this network are:

R X2 X2
Re(Z) = - c
(RX| - RXc)2 + X2 X2
(A5.3.2)
RX| X
1Zi = S 1
[(RXL - RX)2 + X2 Xc2] 72
A5.4 Example

Calculations of the RIAA equalized phono input noise are
done using Equations (A5.2.1)-(A5.3.2). Center frequencies
and frequency bands must be chosen: values of Rp, Lp,
Re(Z), | Z| and noise calculated for each band, then
summed for the total noise. Octave bandwidths starting at
25Hz will be adequate for approximating the noise.

An ADC27 phono cartridge is used in this example, loaded
with C = 250pF and Ra = 47kS2, as specified by the
manufacturer, with cartridge constants of Rs = 1.13k{2 and
Ls = 0.75H. (Cc may be neglected.) Table A5.1 shows a
summary of the calculations required for this example.

A5.5 Conclusions

The RIAA equalized noise of the ADC27 phono cartridge
and preamp input network was 0.75uV for the audio band.
This is the limit for S/N ratios if the preamp was noiseless,
but zero noise amplifiers do not exist. If the preamp noise
voltage was 0.64uV then the actual noise of the system is
0.99uV ([0.642 + 0.752]%2uV) or -66dB S/N ratio (re 2mV
@ 1kHz input). This is a 4dB loss and the preamp current
noise will degrade this even more.
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Thus it is apparent that present phono preamp S/N ratio
measurement methods are inadequate for defining actual
system performance, and that a new method should be
used — one that more accurately reflects true performance.
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A6.0 GENERAL PURPOSE OP AMPS USEFUL FOR
AUDIO

National Semiconductor’'s line of integrated circuits de-
signed specifically for audio applications consists of 4 dual
preamplifiers, 3 dual power amplifiers, and 6 mono power
amplifiers. All devices are discussed in detail through most
of this handbook; there are, however, other devices also
useful for general purpose audio design, a few of which
appear in Table A6.1. Functionally, most of these parts find
their usefulness between the preamplifier and power
amplifier, where line level signal processing may be required.
The actual selection of any one part will be dictated by its
actual function.

TABLE A6.1 General Purpose Op Amps Useful for Audio
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Device! YW IR E LS ~ Audio Application Interest
LM301A | X X 54 3> %18 3 Low THD.
LM310 X X 30 |5~ *18 5.5 Fast unity-gain buffer.
LM318 X X 50 |[+5—> 18 10 High slew rate.
LM324 X X 0.3 330 2 Low supply current quad

< | (#1.5 > £15) R st
LM343 X X 25 |4 - 34 5 High supply voltage.
LM344 X X 30 |4 > £34 5 Fast LM343.
LM348 X X 05 (15> 118 4.5 Quad LM741.
LM349 X X 2 15 > +18 45 Fast LM348.
LF355 X X 5 15> +18 4 Low supply current LF356.
LF356° | X X 12 |45 #18 10 Fast, JFET input, low noise.
LF357 X X 50 |*5—>+18 10 Higher slew rate LF356.

330

LM358 X X 0.3 (+1.5 - +15) 1.2 Dual LM324.
LM394 — - - - - — - Supermatch low noise transistor pair.
LM741 X X 05 |3~ %18 2.8 Workhorse of the industry.
LM747 X X 05 |3~ %18 5.6 Dual LM741 (14 pin).
LM1458 X X 0.2 |3~ 18 5.6 Dual LM741 (8 pin).
LM3900 X | x 0 |5g 0 10 | Quad t differenci

i (+2 > +15) uad current differencing amp.
LM4250 | X X 0.03|£1 > %18 0.1 Micropower.
1. Commercial devices shown (0°C-70°C); extended temperature ranges available.
2. Decompensated devices stable above a minimum gain of 5V/V.
3. Ay = 1V/V unless otherwise specified.
4. Compensation capacitor = 3pF; A, = 10V/V minimum.
5. Highly recommended as general purpose audio building block.



